

<u>Electroencephalograph (EEG)</u> <u>& Brain-Computer Interface</u>

Blaine Allen, Alex Arensmeier, Stephen Trotnic Department of Electrical and Computer Engineering Missouri University of Science and Technology Rolla, MO 65409-0040

O

Team Members

Blaine Allen

Neuroscience & Pattern Recognition Computer Engineer

<u>Alex Arensmeier</u>

Data Acquisition & Signal Processing

Electrical Engineer

Stephen Trotnic

EEG Hardware & Simulation

Electrical Engineer

Brain-Computer Interface (BCI)

Interaction between a human

neural system and one or

more computers

What is a

Brain-Computer Interface?

Multidisciplinary Research

Brain-Computer Interface

Overview

Primary:

Design & Construction of Electroencephalogram (EEG)

Ancillary:

Signal Processing & Neural Pattern Recognition Brain-Computer Interface

EEG Design

What is an Electroencephalograph?

- Repeatable placement of electrodes
- \circ Amplification of the 10-100 µV brain waves
- Required understanding of brain function for electrode placement

Neuroscience of Electrode Placement

We aim to discern neuro-electrical signals pertaining to vision, movement, and planned action.

Neural Cortices of Interest:

Visual Cortex

Primary Motor Cortex

Primary Sensorimotor Cortex

Software & Signal Processing

Signal processing utilizing MATLAB

- Data acquired with an Arduino Mega at greater than 500 samples / second
- Initial data filtering and artifact detection done through the EEGLab & BCILab Toolboxes

$$f(t) = \int_{-\infty}^{\infty} f(\omega) \cdot \mathrm{e}^{-i\omega t} \mathrm{d}\omega$$

Fourier Transform

Neural Signal Pattern Recognition

Event Related Potentials:

• Repetitive averaging of test samples

Wavelet Analysis

- Discrete component of wave
- Recognized wavelet generates

electrical output control signals

Event Related Potential

Blaine Allen (bh9z8@mst.edu)

In-progress BCI Application

Thought-controlled interaction with a virtual-reality environment

2-Axis Movement

Pattern Recognition triggers output controls for movement and object manipulation

Object Manipulation

Potential Thought-Controlled Future Applications

Medical

- Wheelchairs
- Thought-to-Text Communication
- Advanced Prosthetics & Bionics

Commercial

- Realistic Full-Immersion Virtual
 Reality Gaming
- Realistic Military, Police, Surgeon
 Training Simulation

Credit: John's Hopkins University Acquired: 4/1/2018

Credit: Building 8 Research Lab. Acquired: 4/1/2018

Acknowledgements

Dr. Ian Ferguson - Primary Advisor Dr. Amy Belfi - Neuroscience Advisor Dr. Donald Wunsch - Pattern Recognition Advisor Missouri University of Science & Technology

<u>Electroencephalograph (EEG)</u> <u>& Brain-Computer Interface</u>

Blaine Allen, Alex Arensmeier, Stephen Trotnic Department of Electrical and Computer Engineering Missouri University of Science and Technology Rolla, MO 65409-0040

